Tricyclic antidepressant amitriptyline activates fibroblast growth factor receptor signaling in glial cells: involvement in glial cell line-derived neurotrophic factor production.

نویسندگان

  • Kazue Hisaoka
  • Mami Tsuchioka
  • Ryoya Yano
  • Natsuko Maeda
  • Naoto Kajitani
  • Norimitsu Morioka
  • Yoshihiro Nakata
  • Minoru Takebayashi
چکیده

Recently, both clinical and animal studies demonstrated neuronal and glial plasticity to be important for the therapeutic action of antidepressants. Antidepressants increase glial cell line-derived neurotrophic factor (GDNF) production through monoamine-independent protein-tyrosine kinase, extracellular signal-regulated kinase (ERK), and cAMP responsive element-binding protein (CREB) activation in glial cells (Hisaoka, K., Takebayashi, M., Tsuchioka, M., Maeda, N., Nakata, Y., and Yamawaki, S. (2007) J. Pharmacol. Exp. Ther. 321, 148-157; Hisaoka, K., Maeda, N., Tsuchioka, M., and Takebayashi, M. (2008) Brain Res. 1196, 53-58). This study clarifies the type of tyrosine kinase and mechanism of antidepressant-induced GDNF production in C6 glioma cells and normal human astrocytes. The amitriptyline (a tricyclic antidepressant)-induced ERK activation was specifically and completely inhibited by fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitors and siRNA for FGFR1 and -2. Treatment with amitriptyline or several different classes of antidepressants, but not non-antidepressants, acutely increased the phosphorylation of FGFRs and FGFR substrate 2α (FRS2α). Amitriptyline-induced CREB phosphorylation and GDNF production were blocked by FGFR-tyrosine kinase inhibitors. Therefore, antidepressants activate the FGFR/FRS2α/ERK/CREB signaling cascade, thus resulting in GDNF production. Furthermore, we attempted to elucidate how antidepressants activate FGFR signaling. The effect of amitriptyline was inhibited by heparin, non-permeant FGF-2 neutralizing antibodies, and matrix metalloproteinase (MMP) inhibitors. Serotonin (5-HT) also increased GDNF production through FGFR2 (Tsuchioka, M., Takebayashi, M., Hisaoka, K., Maeda, N., and Nakata, Y. (2008) J. Neurochem. 106, 244-257); however, the effect of 5-HT was not inhibited by heparin and MMP inhibitors. These results suggest that amitriptyline-induced FGFR activation might occur through an extracellular pathway, in contrast to that of 5-HT. The current data show that amitriptyline-induced FGFR activation might occur by the MMP-dependent shedding of FGFR ligands, such as FGF-2, thus resulting in GDNF production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tricyclic antidepressant amitriptyline activates fibroblast growth factor receptor (FGFR) signaling in glial cells: Involvement in glial cell line-derived neurotrophic factor (GDNF) production

Recently, both clinical and animal studies demonstrated neuronal and glial plasticity to be important for the therapeutic action of antidepressants. Antidepressants increase glial cell line-derived neurotrophic factor (GDNF) production through monoamine-independent protein tyrosine kinase (PTK), extracellular signal-regulated kinase (ERK) and cAMP responsive element binding protein (CREB) activ...

متن کامل

Antidepressants increase glial cell line-derived neurotrophic factor production through monoamine-independent activation of protein tyrosine kinase and extracellular signal-regulated kinase in glial cells.

Recent studies show that neuronal and glial plasticity are important for therapeutic action of antidepressants. We previously reported that antidepressants increase glial cell line-derived neurotrophic factor (GDNF) production in rat C6 glioma cells (C6 cells). Here, we found that amitriptyline, a tricyclic antidepressant, increased both GDNF mRNA expression and release, which were selectively ...

متن کامل

The Effects of Progesterone on Glial Cell Line-derived Neurotrophic Factor Secretion from C6 Glioma Cells

Objective(s)Progesterone is a steroid hormone whose biology has been greatly studied within the confines of reproductive function. In recent years, the neuroprotective effects of progesterone have attracted growing interest. Glial cell line-derived neurotrophic factor (GDNF), is a neurotrophic factor which plays a crucial role in the development and maintenance of distinct sets of central and p...

متن کامل

Antidepressant Acts on Astrocytes Leading to an Increase in the Expression of Neurotrophic/Growth Factors: Differential Regulation of FGF-2 by Noradrenaline

Recently, multiple neurotrophic/growth factors have been proposed to play an important role in the therapeutic action of antidepressants. In this study, we prepared astrocyte- and neuron-enriched cultures from the neonatal rat cortex, and examined the changes in neurotrophic/growth factor expression by antidepressant treatment using real-time PCR. Treatment with amitriptyline (a tricyclic antid...

متن کامل

Pharmacological Activation Gi/o Protein Increases Glial Cell Line-Derived Neurotrophic Factor Production through Fibroblast Growth Factor Receptor and Extracellular Signal-Regulated Kinase Pathway in Primary Cultured Rat Cortical Astrocytes.

A significant reduction of glial cell line-derived neurotrophic factor (GDNF) has been identified in the pathophysiology of neurodegenerative and neuropsychiatric disorders. Thus, clarification of the mechanism of GDNF production, and modulating brain GDNF levels could be a novel therapeutic approach. A previous study demonstrated that antidepressant amitriptyline-induced GDNF production was si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 24  شماره 

صفحات  -

تاریخ انتشار 2011